## Variance-Covariance Matrix of Random Effects

a. From (12.17) we get

Й = ct^In <8> Jt) + c^.In <8> It)

Replacing JT by TJT, and IT by (Et + JT) where ET is by definition (It — JT), one gets

Й = Tc^(In <8> Jt) + c^(In <8> Et) + c^.In <8> Jt)

collecting terms with the same matrices, we get

Й = (Tc^ C c2)(In <S> Jt) C cv2(In <S> Et) = стуР + cv2Q where Cj2 = Tc2 C c2.

b. p = z2(z;z2)“ z; = IN <S> JT is a projection matrix of Z2. Hence,

it is by definition symmetric and idempotent. Similarly, Q = INT — P is the orthogonal projection matrix of Z2. Hence, Q is also symmetric and idempotent. By definition, P + Q = INT. Also, PQ = P(Int—P) = P—P2 = P — P = 0.

c. From (12.18) and (12.19) one gets

П ^-1 = (ci2P C cv2Q) (%P C q) = P C Q = Int

Vc12 cv2 J

since P2 = P, Q2 = Q and PQ = 0 as verified in part (b)...

Read More