## Cramer-Rao Lower Bound

We shall derive a lower bound to the variance of an unbiased estimator and show that in certain cases the variance of the maximum likelihood estimator attains the lower bound.

THEOREM 7.4.1 (Cramer-Rao) Let L(Xb X2, . .., Xn | 0) be the likelihood function and let 0(Xlt X2,. . . , Xn) be an unbiased estimator of 0. Then, under general conditions, we have

(7.4.1) V(0) > ——— ^———

log L

d02

The right-hand side is known as the Cramer-Rao lower bound (CRLB).

(In Section 7.3 the likelihood function was always evaluated at the observed values of the sample, because there we were only concerned with the definition and computation of the maximum likelihood estimator...

Read More